
I AD-AI04 5141 GENERAL ELECTRIC CO ARLINGTON VA INFORMATION SYSTEMS--ETC F/G 9/2
THE EFFECTS OF THE SYMBOLOGY AND SPATIAL ARRANGEMENT OF SOFTWAR-ETC(U)
AUG 81 S B SHEPPARD, J W4 BAILEY, E KRUESI N00014-79-C-OR95

UNCLASSIFIED YR-Al-3B8200 14 NL

ADA104541

THE EFFECTS OF THE SYMBOLOGY AND SPATIAL ARRANGEMENT

~ I ~-OF SOFTWARE SPECIFICATIONS IN A DEBUGGING TASK

I SYLVIA B. SHEPPARD

JOHN W. BAILEY

I ELIZABETH KRUESI

ISoftare Management Research D-T I C
IGeneral Electric Company is,

1755 Jefferson Davis Hi0ghway SEP 2419
Arlington, Virginia 22292

-I TR-81-388200-4A
Thdoculent has been upo6

G ENERAL ELECTRIC
-8-1- 9 2 - 2

* ~ - -V7 .

TR-81-388200-4

THE EFFECTS OF THE SYMBOLOGY AND SPATIAL ARRANGEMENT

OF SOFTWARE SPECIFICATIONS IN A DEBUGGING TASK

Sylvia B. Sheppard
John W. Bailey

Elizabeth Kruesi

Software Management Research
Information Systems Programs

General Electric Company
1755 Jefferson Davis Highway

Arlington, Virginia 22202

Submitted to:

Office of Naval Research
Engineering Psychology Programs

Arlington, Virginia

Contract: N00014-79-C-0595
Work Unit: NR 196-160

August 1981

Approved for public release: distribution unlimited. Reproduction in whole or in part
is permitted for any purpose of the United States Government.

.. ----

J SECURITY CLASSIFICA710N OF
T

HIS MAGE (When Do* Entered)

REPORT DOCUMENTATION PAGE .READ I.NSTCCTORS
I. REPORT NUMBER 2. GOVT ACCESSION NO." I. RECIPIENT'S CATALOG NUMBER

4. TITLE :end Subtitle S. TYPE OF REPORT 6 PERIOD COVERED

The Effects of the Symbology and Spatial / Technical eporit,,
' Arrangement of Software Specifications in

a Debugging Task, S. X F'o 111-- A - 0 - - R

AUT-ORSI 8. C4 .R ACT OR 5,RAN NUM S ,j

Sylvia B.lSheppard,' John W.]Baileyl '] N00014-79-C-0595/.
ElizabethlKruesi

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM EL.EMENT. PROJEC7. TASK
AREA & RORK LUNIT NUM.IBER

Informatidn Systems Programs
General Electric Company NR 196-160
1755 Jefferson Davis Hwy., Arlington, VA 22202

11. CONTROLLING OFFICE NAME AND ADDRESS 12. RAEPORT DATE

Engineering Psychology Programs, Cede 442 ./} August 1981
Office of Naval Research 13. -. M,. ,0P--,,G ,,
Arlington, Virginia 22217 37

14. MONITORING AGENCY NAME & AOORESS(I! different from Controlling Office) IS, SECURITY CLASS. ot this report)

same Unclassified
ISa. OECLASSIFICATION DOWNGRADING

SCHEDULE

1S. DISTRIBUTION STATEMENT (of :his Report)

Approved for public release; distribution unlimited.

17. DISTRIeUTION STATEMENT (of bse nbtract en:ered in Block 20, itf different fron Report)

same

IS. SUPPLEMENTARY NOTES

Technical Monitor: Dr. John J. O'Hare

19. KEY WORDS (Continue on reverse side if necessery and identify by block number)

Software engineering, Software experiments, Structured programming,
Modern programming practices, Software documentation, Flowcharts,
Program design language, Software human factors.

20. ABSTRACT (Continue an reverie side if necessary end Identify by block number)

This report describes the third in a series of experiments to evaluate
the effects of the format of software specifications on programmer performance.
The current experiment examined performance on a debugging task. Thirty-six

S- professional programmers were presented with specifications for each of three
modular-sized programs. Nine different specification formats were prepared
for each program. These formats varied along two dimensions: type of
symbology and spatial arrangement. The type of symbology included natural

FORM

DD JAN 73 1473 EDITION OF I NOV 55 ISo SSO.ET Unclassified ,

• , //. ,/SECURITY CLASSIFICATION OF THIS PAGE (
7

7on Data Enterer
' W ,W

SECUR! ry CLAS31FICATION OF THIS PAGE(When Date Entered)

-language, constrained language (PDL), and ideograms (flowchart symbols). The

spatial arrangement included sequential (vertical flow), branching (flowchart),

and hierarchical (tree-like)..

The participants compared correct specifications to error-seeded program

listings. Their task was to locate the several errors per program and to
correct the errors using a text editor. The program output was checked
automatically and a message informed the participants whether the output was
correct or incorrect. The participants were asked to continue debugging until
all errors had been located and corrected. The difficulty of the debugging
task was measured by the time required to detect and correct the errors and by
the number of submissions required for a correct run.

Substantial differences in the time to debug were associated with the type
of symbology. Debugging from natural language specifications took longer than
debugging from either constrained language or ideograms. This result is

consistent with the results from the previous experiments in which natural
language specifications were associated with longer response times in a
comprehension task and in a coding task.

The overall effect of spatial arrangement was not pronounced in this
experiment. However, individual combinations of symbology and spatial arrange-
ment appeared to be differentially useful in the debugging task. Four formats
resulted in a high level of performance. These were the sequential and branching
constrained language versions and the branching and hierarchical ideograms.

-7

LEI

- UncLassified V
SECURITY CLASSIFICATION OF THIS PAGEien Date Entered)

TABLE OF CONTENTS

Title Page

INTRODUCTION... 1

Empirical Evaluation of Software Documentation Formats ... 1

Characteristics of Software Documentation................... 4
Type of Symbology.. 5
Spatial Arrangement.. 5

Effects of Symbology and Spatial Arrangement
on Comprehension... 6

Effects of Symbology and Spatial Arrangement
in a Coding Task... 7

Debugging.. 9

METHOD... 10

Participants.................................. 10

Independent Variables 10
Program Type.. .. 10
Type of Symbology... 12
Spatial Arrangements................ 12

Procedure 13

Design................. 15

RESULTS........................ 17

Debugging Task.. 17

Number of Submissions 19

Preferences for Type of Symbology and Spatial Arrangement 19

Experiential Factors.. 21

DISCUSSION... 22

* ACKNOWLEDGEMENTS.. 26

REFERENCES... 27

APPENDIX A - ERROR-SEEDED PROGRAM LISTINGS................. 29

TECHNICAL REPORTS DISTRIBUTION LIST........................ 38

INTRODUCTION

Large-scale software projects necessarily involve

communications among individuals with diverse skills and

experience. Software design, coding, and maintenance are

commonly performed by a variety of individuals at different

points in time. The efficiency with which software-related

tasks are performed depends critically on the documentation

supplied from the previous phases of the software life cycle.

The purpose of this research is to empirically evaluate a

number of different documentation formats. Previous

experiments in this series have examined the effects of these

formats on comprehension and coding performance. The current

experiment investigated performance in a debugging task.

Empirical Evaluation of Software Documentation Formats

There has been a continued interest in the relative value

of flowcharts, program design language (PDL) , and English prose

as software development and documentation tools. An early

empirical assessment of the value of flowcharts in programming

* was reported by Shneiderman, Mayer, McKay and Heller (1977).

They performed a series of experiments on the composition,

comprehension, debugging and modification of programs. For the

-Page 1-

. ma -..

composition task, the participants were asked to write a

program; some were also asked to produce a flowchart in

addition to the program. For the comprehension, debugging, and

modification tasks, all participants were given a program

listing while some were given a flowchart as an additional

aid. Shneiderman et al. found no significant differences in

any of their experiments between groups that did and did not

use flowcharts.

In another study, Ramsey, Atwood, and Van Doren (1978)

compared the effectiveness of flowcharts to that of a program

design language. In one experiment, programmers expressed a

design in either a flowchart or PDL. In a second experiment,

programmers produced code from designs expressed in either a

flowchart or PDL. Ramsey et al. found no difference in

performance on the tasks in either experiment. However, the

designs expressed in a PDL were judged to be of superior

quality in that they included greater algorithmic detail, more

modularization, and less abbreviation of variable names than

those expressed as flowcharts.

Brooke and Duncan (1980) compared flowcharts and sequential

instructions as debugging tools. They concluded 'that

flowcharts were useful for tracing execution sequences in a

program but were not helpful in conceptualizing relationships

*among non-contiguous segments of the program.

-Page 2-

--'1.. ! rlT F1 'r , i ~ - --

Although studies performed on software-related tasks have

not been especially favorable to flowcharts, experiments

performed in other areas of information presentation have

demonstrated an advantage for flowcharts over alternative

presentation formats including prose descriptions, short

sentences, and decision tables (Wright and Reid, 1973; Blaiwes,

1974; Kammann, 1975). Kammann, for example, presented

participants with a set of telephone dialing problems. The

dialing instructions were presented in the form of a prose

description or a flowchart. Fewer errors were made with the

flowchart. [For a review of the non-software research, see

Sheppard, Kruesi, and Curtis (1981)].

An experiment recently reported by Miller (1981) raises

some doubts about the advisability of natural language as

either a development or documentation tool. Miller asked

non-programmers to write procedures for solving problems that

were representative of common computer applications. Careful

analysis of the protocols led Miller to conclude that even

minor increases in the complexity of problems led to marked

decreases in the quality of the solutions. Further, the high

degree of contextual referencing found in the solutions

provided doubts about the feasibility of adequate natural

language specifications. Miller suggests that we would improve

the quality of programs "...with tools that structure the

problem and the implementation processes" (p. 2 12).

-Page 3-I
*-1

Characteristics of Software Documentation

The studies described above have involved an analysis of

documentation formats currently in use. A comparison of any

two or more formats, such as PDL and flowcharts, may yield

useful information about the relative value of these formats.

This comparison does not, however, allow us to isolate the

source of any observed differences since documentation formats

vary along more than one dimension.

In general, there are two primary dimensions for

* categorizing how available documentation aids configure the

information they present to programmers (Jones, 1979). The

first dimension is the type of symbology in which information

is presented. The second dimension is the spatial arrangement

of this information. PDL, for example, uses constrained

language as the symbology presented in a sequential spatial

arrangement. Flowcharts use ideogram symbols presented in a

branching spatial arrangement. Thus, any differences observed

in the effectiveness of PDL and flowcharts may be due to the

differences in the symbols, in the spatial arrangement or to an

interaction of these two dimensions.

Our approach to evaluating various forms of documentation

is to investigate the separate and combined effects of these

two dimensions. Specifically, we have factorially combined

three types of symbols with three spatial arrangements to

produce nine different formats.

-Page 4-

. i , 4 - TT. . - - . . . , . ..,- .

Type of Symbology. The symbology dimension includes

natural language, constrained language, and ideograms. Docu-

mentation in the form of natural language is frequently found

embedded in the source code as either global or in-line

comments. Constrained language, which is embodied in a Program

Design Language (PDL) , is more succinct than natural language,

using strictly defined keywords to describe arguments or

predicates. Ideograms are frequently found in flowcharts and

HIPO charts (Bohl, 1971; Katzen, 1976). A standard set of

ideograms has come to represent processes or entities within a

program.

Spatial Arrangement. The spatial arrangement of infor-

mation in documentation is a second dimension along which

documentation techniques can be categorized. In the current

experiment, this dimension is represented by a sequential, a

branching, and a hierarchical arrangement. A sequential

arrangement is typical of narrative description, program

listings and PDL while a branching arrangement is typical of

flowcharts. A hierarchical arrangement is not generally used

for individual module specifications but, rather, at the system

level to present a visual display of the relationship among

modules.

This report describes the third in a series of experiments

to investigate the effects of the type of symbology and the

spatial arrangement. For all experiments, the three types of

-Page 5-

- -- I-

symbology (natural language, constrained language, and

ideograms) are factorially combined with the three spatial

arrangements to produce nine different documentation formats.

The first experiment, which is described in Sheppard, Kruesi,

and Curtis (1981), investigated comprehension performance. The

second experiment examined the influence of these dimensions on

the ability of programmers to translate the specifications into

code (Sheppard & Kruesi, 1981). This experiment examined the

effects of these dimensions on performance in a debugging

task. The results of the first two experiments are described

briefly in the following sections.

Effects of Symbology and Spatial Arrangement
on Comprehension

In the first experiment, seventy-two professional pro-

grammers were presented with specifications for each of three

modular-sized computer programs. The participants answered a

series of comprehension questions for each program using only

the specifications. The questions were'presented interactively

on a CRT and consisted of three different types. For

forward-tracing questions, the participants were given the

values for a set of conditions in the program. Their task was

to trace through the specifications and find the first

statement executed under those conditions. For

backward-tracing questions, they were required to locate a

-Page 6-

I

input-output questions, they were given input data and were

asked to determine the value of particular variables at a later

point in the program.

Both forward and backward-tracing questions were answered

more quickly from specifications presented in constrained

language or ideograms than in natural language. On the

average, forward-tracing questions were answered most quickly

from a branching arrangement and backward-tracing questions

were answered more quickly from the branching and hierarchical

arrangements. An examination of the individual formats

revealed that the sequential constrained language (normal PDL),

the branching constrained language and the branching ideogram

(normal flowchart) versions were associated with very quick

responses for both types of questions. For the input-output

questions, no significant differences were found as a function

of the type of symbology or the spatial arrangement. At the

conclusion of the experimental session, participants were asked

to list the type of symbology and the spatial arrangement they

most preferred. Constrained language was the most preferred

symbology and the branching spatial arrangement was the most

preferred arrangement.

Effects of Symbology and Spatial Arrangement
in a Coding Task

In the second experiment (Sheppard & Kruesi, 1981),

thirty-six professional programmers were presented with

-Page 7-

specifications and partially completed code for the same three

programs. The participants constructed a section of code at

the middle of each program. These sections contained about

fifteen lines and included the most complex decision structures

present in the programs. The code was completed using a text

editor, and the participants were asked to submit the program

for compilation and .execution. If the program did not run

correctly, they were asked to correct the errors and submit it

again.

Substantial differences in coding time were associated with

the type of symbology. The natural language was considerably

more difficult to code from than the constrained language or

ideograms. An examination of the error data showed that these

differences were due both to errors in coding the control flow

and errors related to assignment statements and variables. The

effect of the spatial arrangement was not as great as the

effect of symbology. Although not statistically significant,

the branching arrangement appeared to be superior to the

sequential and hierarchical arrangements in minimizing

control-flow errors. A comparison of the individual formats

revealed that the constrained language presented in a

sequential or in a branching arrangement resulted in the

highest level of performance.

-Page 8-

j

Again, constrained language was preferred by more

participants than ideograms or natural language, and branching

was the preferred spatial arrangement.

Debugging

The current expqriment compared the same nine formats in a

debugging task. The participants were given specifications for

each of three modular-sized programs (about 50 lines of code).

They compared these specifications to error-seeded program

listings. Their task was to locate and correct the errors

using a text editor. Performance was measured by the time

required to detect and correct the errors and by the number of

submissions required for a correct run.

-Page 9-

Ji-...
IL. -:M

METHOD

Participants

Thirty-six professional programmers from two different

locations participated in this experiment. All were General

Electric employees. The participants averaged 6.2 years of

professional programming experience (S.D. 4.9) and had used

an average of 5 programming languages (S.D. = 2.3).

Independent Variables

The experiment was designed to study the effects of three

independent variables: the type of symbology, the spatial

arrangement of the information, and the type of program.

Program type. In our previous research (Sheppard, Curtis,

Milliman & Love, 1979) significant differences in programmer

performance were often associated with differences among

programs. Three programs of varying types were chosen for use

in this experiment. (These three programs were used in the

first two experiments as well.) A program which calculated the

trajectory of a rocket was chosen as representative of an

engineering algorithm. An inventory system for a grocery

-Page 10-
J*~I

- !'

distribution center represented the class of programs that

manipulate data bases. A third program combined these two

types of applications. This program interrogated a data base

for information concerning the traffic pattern at an airport

and simulated future needs using a queuing algorithm.

These three programs were based on algorithms contained in

Barrodale, Roberts, and Ehle (1971). The algorithms were

modified to incorporate only the constructs of sequence,

structured iteration, and structured selection. They were then

coded in Fortran and verified for correctness. Each of the

resulting programs contained approximately 50 lines of

executable code. In addition a short algorithm (18 lines) to

find the largest of three integers was used as a practice

program.

The practice program was modified to contain one error.

The experimental programs each contained three errors. The

errors were selected from among errors made in the coding

experiment, which had used the same experimental materials.

The errors included both transfer of control and

assignment/variable errors but did not include syntax errors.

Listings of the incorrect programs are shown in Appendix A.

Handwritten corrections are included for the reader's benefit.

-Page 11-

Type of Symbology. The statements from each program were

translated into detailed specifications. Three types of

symbology were used: natural language, constrained language,

and ideograms. A consistent set of rules was used to map

assignment, selection, and iteration statements across the

three types of symbology.

Spatial Arrangements. Three spatial arrangements were used

to represent the program structure: sequential, branching, and

hierarchical. These three arrangements differed in the

representation of control flow and nesting levels. In the

sequential arrangement, both the control flow and the levels of

nesting were represented vertically. In the branching

arrangement, the flow of control was represented vertically

while nesting levels were represented horizontally. Finally,

in the hierarchical arrangement, the flow of control was

represented horizontally while nesting levels were represented

vertically.

Each of the three types of symbology was presented in the

three spatial arrangements, resulting in nine specification

formats for each program. Examples of the nine forms for the

rocket trajectory program may be found in the first technical

report of this series (Sheppard, Kruesi, and Curtis, 1980).

-Page 12-

I..' -- , . . . " - . .. ' ''

Procedure

Prior to the experiment, the participants were given a

20-minute training session in which they were shown each

spatial arrangement and each type of symbology. The

experimenter described the control flow for each arrangement

using a sorting program as an example; this program was not

seen in the actual experiment. The procedure for using the

text editor to correct the programs was also explained in

detail during the training session.

Experimental sessions were conducted at CRT terminals on a

VAX 11/780. All coding was done in Fortran. The participants

were first given a practice program containing a single error.

Identical listings of the code appeared on the CRT screen and

on a paper printout. The participants were told there was one

error and were asked to correct the code, using the text

editor. When satisfied that the program would perform

correctly, a participant exited from the editor and activated a

command file to compile and run the program. If the

compilation was unsuccessful, a compiler message appeared on

the screen directly below the line or lines containing the

error. If the program compiled without errors, it was

automatically executed with test data, and the output from the

program appeared on the screen with one of the following

messages: "OUTPUT IS CORRECT" or "OUTPUT IS INCORRECT." In

the latter case, the participant was asked to keep trying until

the program was correct.

-Page 13-
a9

LMc1

Following the practice program, the three experimental

programs were presented. For each program, the participants

received a correct version of the specifications; these were

contained on a single piece of paper. In addition, they

received identical listings of the error-seeded code on the CRT

screen and on a paper printout. They also received .a data

dictionary listing each variable, a natural language

description of it, and its data type.

The participants were told that there were several errors

in each experimental program and that all of them were located

in the center section of the code, labeled the "COMPUTATION"

section (See Appendix A). They were instructed to compare the

specifications to the code, locate the errors and correct

them. If a participant tried running the program without

making any changes, the program compiled successfully but

produced the message that the output was incorrect.

An interactive data collection system prompted the

participant throughout the experimental procedure. The system

recorded each change made to a program. An interval timer,

accurate to the nearest second, recorded the time for each

action. When a participant required more than one editing

session to locate and correct the errors, the experimental

system recorded exits from the editor, any compilation errors,

-Page 14-

5-.

and the incorrect outputs generated. From these data, the time

to debug the programs was calculated by summing the times from

the individual editing sessions; time for compiling and running

the programs was not included.

On the average, the participants spent approximately 16

minutes on each experimental program. They were required to

continue working on a program until all errors had been located

and corrected. They were allowed to take breaks between

programs.

Following the experiment, the participants completed a

questionnaire about their previous programming experience. The

information requested included number of years of professional

experience, number of programming languages known, and whether

they had previously worked with algorithms of the types used in

the experiment. The participants were also asked about their

preferences for type of symbology and spatial arrangement.

Design

The three types of symbology (natural language, constrained

language, and ideograms) were factorially combined with the

three spatial arrangements (sequential, branching, and

hierarchical) to produce nine specification formats. These

nine formats were constructed for each of the three programs,

resulting in a total of 27 conditions.

-Page 15-

- .--

Participants received a set of specifications for each

program. Across the three programs, they saw each type of

symbology and each spatial arrangement. The first participant,

for example, saw the rocket trajectory program presented in

sequential natural language, the inventory control program in

hierarchical constrained language, and the airport traffic

program in branching ideograms. The participants were assigned

to conditions according to the procedures outlined in Winer

(1971). [See also Kirk (1968)]. Each of the 27 conditions was

used once within a set of nine participants. For this 33

randomized block design, a minimum of 36 participants is

required to assess all interactions and main effects. Across

the 36 participants, each program, symbology, and arrangement

was presented first, second, and third an equal number of times.

-Page 16-

1. ! !, . T , ,. . , : .,m ,

RESULTS

Debugging Task

The participants required an average of 16 minutes to debug

a program. This represents the amount of time spent studying

the program and using the text editor (i.e., the total time

spent at the terminal less the time for compiling, linking and

running).

There were no differences among the times to debug the

three programs. The rocket program required an average of 15.7

minutes, the airport program 15.8 minutes and the inventory

program 16.0 minutes.

There was a significant difference among the types of

symbology. The natural language versions required 18.7 minutes

as compared to 14.5 minutes for the constrained language and

14.2 minutes for the ideograms (Table 1). This difference was

verified by an analysis of variance (p < .05) (See Table 2).

For this analysis, a logarithmic transformation was carried out

* on the times to attenuate the influence of extreme scores and
a

to produce a more normal distribution (Kirk, 1968).

-Page 17-

.' - ...

Table 1. Time to Debug (Minutes)

TYPE OF SYMBOLOGYSPATIAL
NATURAL CONSTRAINED TOTAL

ARRANGEMENT LANGUAGE LANGUAGE -RAMS

SEQUENTIAL 19.8 12.1 18.2 16.7

BRANCHING 18.2 14.6 14.6 15.8

HIERARCHICAL 1 8. 1 16.7 9.8 14 .9

TOTAL 18.7 14.5 14.2 15.8

Note: Individual cell means represent 12 participants.

Table 2. Summary of ANOVA

Time to Debug

SOURCE df SS MS F 2

TOTAL 107 3.61
BETWEEN PARTICIPANTS

AND REPLICATIONS

REPLICATIONS 3 .15
PARTICIPANTS WITHIN

REPLICATIONS

WITHIN PARTICIPANTS

AND REPLICATIONS

PROGRAM (P) 2 .01 .01 .20

SYMBOLOGY (S) 2 .37 .18 3.60 .05
V ARRANGEMENT (A) 2 .03 .01 .20

P x S 4 .17 .04 .80

P x A 4 .07 .02 .40

S A 4 .23 .06 120
r SxA 8 .24 .03 .60 1

RESIDUAL 46 2.32 .05

-Page 18-

The effect of the spatial arrangement was not significant,

and there were no significant interactions.

Number of Submissions

All of the errors in the programs were successfully located

and corrected by all of the participants. An average of 2.0

submissions were required to run the programs correctly. As

with the debugging times, there were no differences in number

of submissions across programs.

Table 3 presents the number of submissions broken down by

type of symbology and spatial arrangement. Unlike the

debugging times, there were no significant differences for type

of symbology. An analysis of variance indicated no significant

main effects or interactions.

Preferences for Type of Symbology and Spatial Arrangement

Across the three programs, each participant received

specifications in each type of symbology and in each spatial

arrangement. The questionnaire indicated which three of the

nine versions they had experienced during the experiment. They

were asked to state which of the three versions they

preferred. Table 4 shows these preferences.

-Page 19-

PIN• i

a. - -- - - -- ---- -- -

Table 3. Number of Submissions
Required to Complete Task

TYPE OF SYMBOLOGYSPATIAL
NATURAL CONSTRAINED TOTAL

ARRANGEMENT LANGUAGE LANGUAGE IDEOGRAMS

SEQUENTIAL 1.8 1.9 2.5 2.1

BRANCHING 2.2 1.9 1.8 2.0

HIERARCHICAL 1.6 1.8 1.3 1.8

TOTAL 1.9 1.9 2.2 2.0

.Vote: Individual cell means represent 12 participants.

Table 4. Percent of Preferences

for Symbology and Spatial Arrangement

TYPE OF SYMBOLOGY
SPATIAL

NATURAL CONSTRAINED TOTAL
ARRANGEMENT LANGUAGE LANGUAGE IDEOGRAMS

SEQUENTIAL 9 9 6 24

BRANCHING 15 18 25 58

HIERARCHICAL 9 6 3 18

TOTAL 33 33 34 100

* -Page 20-

. .'. '.--.

The three types of symbology were preferred equally often.

In terms of the spatial arrangement, branching was the most

preferred, sequential was intermediate and hierarchical was the

least preferred.

Experiential Factors

The questionnaire also asked for the number of years the

participants had programmed professionally and the number of

programming languages they had used. No correlation was found

between years of experience and time to debug. Number of

languages and debugging time were correlated -. 26 (p < .06) ,

indicating that programmers who had experience with a greater

number of programming languages performed the tasks in this

experiment more quickly.

-Page 21-

Ica&
* .- , .-

DISCUSSION

The same three programs were used in the current experiment

as in the comprehension and coding experiments. In the earlier

experiments, significant differences in performance were

associated with these three programs. Specifically, the

airport-scheduling program was considerably more difficult than

the inventory-control or rocket-trajectory programs. In the

current experiment, no differences were observed in performance

across the three programs. One possible explanation for this

equality is that the rela'ive difficulty of the errors exactly

compensated for the inherant difficulty of the programs. Thus,

the errors seeded in the airport-scheduling program may have

been easier errors to detect and correct than those seeded in

the remaining two programs. This "balancing" explanation

appears unlikely since the types of errors (transfer of control

and assignment/variable) and their physical locations were

similar across programs.

Another possible explanation is that debugging a program

from detailed specifications which are known to be correct does

not require as much knowledge of the intricacies of the

algorithm as does comprehending the specifications or coding

from the specifications. Thus, the inherent difficulty of the

algorithm may be less important in this type of a debugging

task than in the earlier comprehension and coding tasks.

-Page 22-

M. mw

Differences in the type of symbology followed the pattern

established in the first two experiments: the natural language

versions resulted in significantly longer response times tnan

the constrained language and ideogram versions. Had the

natural language been written casually, one could hypothesize

that it was incomplete and misleading. However, the natural

language was developed very precisely. Assignment, selection

and iteration statements were translated from the original code

into the three types of symbology according to a rigid set of

rules to insure that the natural language specifications were

as complete and precise as the constrained language and

ideograms. It is reasonable to conclude, therefore, that the

differences were due to real differences among the types of

symbology rather than to an experimental artifact. When

combined with identical conclusions from the two previous

experiments in this series, this result presents strong

evidence that detailed program specifications should be

presented in a more succinct symbology than natural language.

No pronounced effect for spatial arrangement appeared in

this experiment. This result agrees with results from the

coding experiment, where time to code and debug showed no

* significant effect due to spatial arrangement.

The comprehension experiment differed from this experiment

and the coding experiment in that there were differences among

the spatial arrangements. Forward-tracing questions were

-Page 23-

- ,~.. - V ---- -----.

answered most quickly from the branching arrangement, and

backward-tracing questions were answered more quickly from the

branching and hierarchical arrangements. Response times for

input-output questions did not vary significantly as a function

of spatial arrangement. One explanation for the differing

results among the experiments is that programming activities

relating to control flow (such as tracing) benefit from the

more pictorial branching and hierarchical arrangements, while

other activities are not affected by the spatial arrangement.

This explanation is supported by the Brooke and Duncan results

presented in the Introduction.

One interesting result found in all three experiments was

that the sequential and branching constrained language versions

were consistently associated with low response times and a

small number of errors. In cases where another version was

associated with a lower response time (e.g. the hierarchical

ideogram version in this experiment), differences among the two

constrained language versions and the other version were not

statistically significant. Of the software specifications

currently in use (i.e. natural language, PDL, and flowcharts),

it appears that PDL results in faster and less error-prone

performance than natural language specifications; flowcharts

appear in between. Sequential PDL has the additional advantage

of being easy to produce at a terminal and easy to read

automatically.

-Page 24-

a.'

,-1

The participants ir; this experiment had no distinct

preference for any ot the three types of symbology. This

result was surprising because in -he previous two experiments

constrained language was preferred, ideograms were second and

natural language was least preferred. As in the previous

experiments, the branching arrangement was the most preferred,

the sequential arrangement was intermediate and the hier-

archical arrangement was preferred least.

Diversity of experience, in terms of the number of lan-

guages used, was a better predictor of performance than years

of experience. This result replicates results from the compre-

hension experient and our previous research (Sheppard, Milliman

& Curtis, 1979) and highlights the importance of ensuring that

programmers have an opportunity to gain broad applications

experience as part of their professional development.

This experiment provides additional evidence that specifi-

cation format can have a significant effect on the performance

of programmers on software-related tasks. A debugging task was

carried out more quickly from specifications presented in a

succinct symbology. An examination of the individual cell

means revealed four formats that led to a high level of perfor-

mance. These were the constrained language presented in a

sequential and in a branching arrangement and the ideograms

presented in a branching and in a hierarchical arrangement.

Natural language led to consistently poor performance,

regardless of the spatial arrangement.

-Page 25-

ACKNOWLEDGEMENTS

The authors would like to thank Dave Morris and Pete McEvoy

for designing the automatic data collection system; Len

Johnson, Charlie Burns, Jim Coughlin, Jim Sanchack, Rob Sandler

and Joe Bevacqua for providing participants and facilities; Dr.

John O'Hare for advice, and Tom McDonald for preparing

materials and statistical analyses.

-

i -Page 26-

..f

REFERENCES

Barrodale, I., Roberts, F.D.K., & Ehle, B.L. Elementary
computer applications in science, engineering, and
business. New York: Wiley, 1971.

Blaiwes, A.S. Formats for presenting procedural instructions.
Journal of Applied Psychology, 1974, 59, 683-686.

Bohl, M. Flowcharting techniques. Palo Alto, CA: Science
Research Associates, 1971.

Brooke, J.B. & Duncan, K.D. Experimental studies of flowchart
use at different stages of program debugging. Ergonomics,
1980, 23, 1057-1091.

Jones, C. A survey of programming design and specification
techniques. In Proceedings of the IEEE Conference on
Specifications of Reliable Software. New York: Institute
of Electrical and Electronics Engineers, 1979.

Kammann, R. The comprehensibility of printed instructions and
the flowchart alternative. Human Factors, 1975, 17, 183-191.

Katzen, H. Systems design and documentation: An introduction
to the HIPO method. New York: Van Nostrand Reinhold, 1976.

Kirk, R.E. Experimental design procedures for the behaviorial
sciences. Belmont, CA: Brooks-Cole, 1968.

Miller, L.A. Natural language programming: styles, strategies,
and contrasts. IBM Systems Journal, 1981, 20, 184-215.

Ramsey, H.R., Atwood, M.E., & Van Doren, J.R. A comparative
study of flowcharts and program design languages for the
detailed procedural specification of computer programs.
(Tech. Rep. #SAI-78-078-DEN), Denver: Science
Applications, Inc. 1978.

Sheppard, S.B., Curtis, B., Milliman, P., & Love, T. Modern
coding practices and programmer performance. Computer,
1979, 12, (12), 41-49.

Sheppard, S.B. & Kruesi, E. The effects of the symbology and
spatial arrangement of software specifications in a coding
task. In Proceedings of Trends & Applications 1981:
Advances in Software Technology, IEEE, 1981.

Sheppard, S.B., Kruesi, E., & Curtis, B. The effects of
symbology and spatial arrangement on the comprehension ot
software specifications. (Tech. Rep. TR-80-388200-2).
Arlington, VA: General Electric, Information Systems
Programs, 1980.

-Page 27-
I

Sheppard, S.B., Kruesi, E., & Curtis, B. The effects of
symbology and spatial arrangement on the comprehension of
software specifications. In Proceedings of the Fifth
International Conference on Software Engineering, IEEE, 1981.

Sheppard, S.B., Milliman, P., & Curtis, B. Experimental
evaluation of on-line program construction (Tech. Rep.
TR-79-388100-6). Arlington, VA: General Electric,
Information Systems Programs, 1979.

Shneiderman, B., Mayer, B.R., McKay, D., & Heller, P.
Experimental investigations on the utility of detailed
flowcharts in programming. Communications of the ACM, 1977,
20, 373-381.

Winer, B.J. Statistical principles in experimental design.
New York: McGraw-Hill, 1971.

Wright, P. & Reid, F. Written information: Some alternatives
to prose for expressing the outcomes of complex
contingencies. Journal of Applied Psychology, 1973, 57,
160-166.

-Page 28-

. -.

'1 1 l
.5, " - , ". '. .

.. ho C. ' . ,.A~

~

p 4

APPENDIX A

I. -

ERROR-SEEDED PROGRAM LISTINGS

I- *' *
-~

& ~ ~

>4
*~-.~v ~-

~'I

,~

...................................IY

~''~

CC- ~ 'C.- -..

* ,>"~

~.2.*' 4

PRACTICE PROGRAM
Find the largest of three Integers, I, J, & K.

OPEN(UNIT=1, NAME='PRAC. DAT ',TYPE='OLD')
10 READ (1,60) I, J. K
15 IF (I GT. J) GO TO 20
'o IF (J. T. K) GO TO 10
25 LARGE - K

30 G T 40)hLpi.a 7
35 10
40 GO 0 40
45 20 IF I GT. K) GO TO 30
50 CLARGE = K
55 GO TO 40
0C; 30 LARGE = I
65 40 PRINT 70, LARGE
70 CLOSE(UNIT=l)
75 aO FORMAT (3I)
sC, 70 FORMAT (10X, LARGEST = I,

e! STOP
END

-Page 31- iLCj"JG 16.A bL - IL

ROCKET PROGRAM

5 INTEGER MAXTTIMEFLAG
10 REAL VACCEL, VVELOC VDIST, HACCEL, HVELOC, HDISTo
15 1 ANGLE, TILT, GRAV, MASS, FUEL, FORCE
20 C
25 C
30 C INITIALIZATION
35 C
40 C
45 VACCEL = 0.
50 VVELOC = 0.
55 VDIST - 0.
60 HACCEL = 0.
65 HVELOC - 0.
70 HDIST = 0.
75 ANGLE - 0.
s0 TILT - 0. 3491
95 GRAV - 32.
90 MASS = 10000.
95 FUEL = 50.
100 FORCE = 400000.
105 MAXT = 200
110 FLAG = 0
115 TIME = 1
120 C
125 C
130 C COMPUTATION:
135 C
140 C
145 10 IF (FLAG. 0) GO TO 60
150 IF (TIME . 100) O TO 20
155 MASS - MAS- FUEL
160 IF (TIME NE. 11) GO TO 30
165 ANGLE - TILT
170 GO TO 30
175 20 IF (TIME .NE. 0) GOTO 30
190 FORCE - 0. 0
195 30 VACCEL - ((FORCE * COS(ANGLE))/MASS) - GRAV
190 VVELOC - VVELOC EL VVzw
195 VDIST VDIST
200 HACCEL - (FORCE * (ANGLE))/MASS
205 HVELOC - HVELOC + HACCEL
210 HDIST - HDIST + HVELOC
215 TIME -TIME + 1

220 IF (VDIST .GT. 0) GO TO 40
225 FLAG - I
230 40 IF (TIME .LE. MAXT) 00 TO 10
235 FLAG - 2

-Page 32-

--SE-P

240 C
245 C
250 C TERMINATION:
255 C
260 C
265 60 TIME -TIME- 1
270 IF (VDIST GQT. 0) 0O TO 80
275 70 WRITE(6,3000) TIME. HDIST
280 GO TO 90
285 80 WRITE(6. 4000) TIME, MASS, VACCEL, VVELDC. VDIST,
290 1 HACCEL.HVELOCHDIST
295 90 CONTINUE
300 STOP
305 3000 FORMAT(5X. 'ROCKET HIT GROUND AT TIME-'. IS.'SECONDS'
310 1 SX. 'HORIZONTAL DIST -'~12

,315 4000 FORMAT(5X. 'ROCKET STILL ALOFT AT TIME -',15.
320 1 ' SECDNDS'/5X, MASS =',F22.2/
325 2 5X. 'VERTICAL ACCEL =',Fl2.2/
330 3 5X, 'VERTICAL VELOC ='.Fl2.2/
3.3 5 4 5X. 'VERTICAL DIST -',F13.2/
340 5 5X. 'HORIZONTAL ACCEL = ',F1O.2/
345 6 5X, 'HORIZONTAL VELOC = ',FlO.2/
350 7 5X, 'HORIZONTAL DIST -',F11.2)
355 END

-Page 33-

1- 4

INVENTORY PROGRAM

5 INTEGER DELIV, FLAG, ITEM, ONHAND, ORDER# RELEV,
10 1 REORD, STORE, UNFILL
15 REAL GTOTAL, PRICE, TOTAL
20 C
25 C
30 C INITIALIZATION:
35 C
40 C
45 OPEN (UNIT-1, NAME= ORDERS.DAT', TYPE='OLD')
50 OPEN (UNIT-2. NAME='PURCHAS.DAT', TYPE-'OLD',
55 1 ACCESS='SEGUENTIAL')
60 C
65 C
70 C COMPUTATION:
75 C
80 C
85 10 READ (1, 100, END=80) STORE
90 GTOTAL - 0
95 WRITE (6, 110) STORE
100 20 READ (1, 120) ITEM, ORDER
105 IF (ITEM EG. 0) GO TO 70
110 CALL FETCH2(ITEM. PRICE, ONHAND, RELEV, REORD, FLAG)
115 IF (ONHAND .LE. ORDER) GO TO 30
120 DELIV = ORDER
125 ONHAND = ONHAND - ORDER
130 UNFILL =
135 30 DELIV - D
140 ONHAND -
145 UNFILL -OR - v
150 40 IF (ONHAND .GT. RELEV) GO TO 50
155 IF (FLAG .EQ. 0) FLAG - 1
160 50 TOTAL = DELIV * PC
165 GTOTAL G OTOTAL &OTAL
170 IF (FLAG .NE. 1) GO TO 60
175 WRITE (2, 130) ITEM, REORD
180 FLAG - 2
185 60 WRITE(6,140) ITEM. PRICE. ORDER, DELIV, UNFILLTOTAL
190 CALL UPDATE (ITEM, ONHAND, FLAG)
195 00 TO 20
200 70 WRITE (6. 150) GTOTAL
205 GO TO 10

-Page 34-

210 C
215 C
220 C TERMINATION:
225 C
230 C
235 80 CLOSE (UNIT-1)
240 CLOSE (UNIT=2)
245 STOP
250 100 FORMAT (12)
255 110 FORMAT (//, 5X, 'INVOICE FOR STORE NUMBER: , 13)
260 120 FORMAT (13. 15)
265 130 FORMAT (217)
270 140 FORMAT (SX, 'ITEM NUMBER: ', Il1 / 5X,
275 1 'PRICE PER ITEM: $', FS. 2 / 5X, 'NUMBER ORDERED:',

280 2 I8, /SX, 'NUMBER DELIVERED: ', 16/ 5X,
285 3 'UNABLE TO DELIVER:',I5/5X, 'TOTAL PRICE: V. FS. 2)
290 150 FORMAT (/,5X, 'TOTAL PRICE FOR ALL ITEMS: $', F10.2)
295- END

1

-Page 35-

.,-,.

AIRPORT PROGRAM

5 INTEGER ARROUE, BEGINT, CLEAR, DEPOUE, ENDT, MAXWT
10 INTEGER NUMARR, NUMDEP, TIME, TOLWT
15 REAL ARPROB, DPPROB, RANDI, RAND2, RSEED
20 C
25 C
30 C INITIALIZATION:
35 C
40 C
45 RSEED = 0.0
50 NUMARR = 0
55 NUMDEP = 0
60 CALL FETCHI(BEGINT, ARPROB, DPPROB, ARRQUE, DEPQUE,
65 1 CLEAR, TOLWT)
70 TIME = BEGINT
75 ENDT = BEGINT + 20
80 c
85 C
90 C COMPUTATION:
95 C
100 C
105 10 IF (TIME .GT. ENDT) GO TO 60
110 RAND1 = RND(RSEED)
115 IF (RAND1 .GT. ARPROB) GO TO 20
120 ARRQUE = ARRQUE + 1
125 20 RAND2 = RND(RSEED)
130 IF (RAND2 GT. DPPROB) GO TO 30
135 DEPQUE = DEPQU + 1
140 30 CONTINUE .+

145 IF (CLEAR IME) GO TO 50
150 IF (ARRQUE 0) GO TO 40
155 ARRQUE = ARRE - 1
160 NUMARR = NUMARR + 1
165 CLEAR - TIME + 3
170 GO TO 50
175 40 IF (DEPQUE .LE. IGO TO 50
180 DEPGUE - DEPQUE
185 NUMDEP - NUMDEP o 1
190 CLEAR - TIME + 2 UAK, - r-Nbr
195 50 TIME =TIME + 1

200 GO TO
205 60 MAXWT - AR + (ARRQUE*3) (DEPQUE*2)

-Page 36-

*.

IJ

210 C
215 C
220 C TERMINATION:
225 C
230 C
235 WRITE (6. 100) ENDT, ARRQUE, NUMARR, DEPQUE,
240 1 NUMDEPJMAXWT
245 IF (MAXWT .GT. TOLWT) GO TO 70
250 WRITE (6, 120)
255 GO TO 80
260 70 WRITE (6, 110)
265 80 CONTINUE
270 STOP
275 100 FORMAT (6X, 'ENDING TIME FOR SIMULATION: '. r5. 1
280 1 12X, 'ARRIVAL QUEUE: ', 15/11X, 'NUMBER ARRIVED: ', 15/
2e5 1 lOX, 'DEPARTURE QUEUE: ', I5/1OX, 'NUMBER DEPARTED: '

290 1 15/ 13X, 'MAXIMUM WAIT: ', 15, /* MINUTES')
295 110 FORMAT (5X, 'OPEN ANOTHER RUNWAY')
300 120 FORMAT (5X. 'ANOTHER RUNWAY NOT NEEDED')
305 END

-Page 37-

.3 le04 %N-

TECHNICAL REPORTS DISTRIBUTION LIST

-Page *

W, tn

OFFICE OF NAVAL RESEARCH

Code 442

TECHNICAL REPORTS DISTRIBUTION LIST

OSD Department of the Navy

CDR Paul R. Chatelier Commanding Officer

Office of the Deputy Under Secretary ONR Eastern/Central Regional Office

of Defense ATTN: Dr. J. Lester

OUSDRE (E&LS) Building 114, Section D

Pentagon, Room 3D129 666 Summer Street

Washington, D.C. 20301 Boston, MA 02210

Department of the Navy Commanding Officer
ONR Branch Office

Engineering Psychology Programs ATTN: Dr. C. Davis

Code 442 536 South Clark Street

Office of Naval Research Chicago, IL 60605

800 North Quincy Street
Arlington, VA 22217 (5 cys) Commanding Officer

ONR Western Regional Office

Director ATTN: Dr. E. Gloye

Communication & Computer Technology 1030 East Green Street

Code 240 Pasadena, CA 91106

Office of Naval Research
800 North Quincy Street Office of Naval Research

Arlington, VA 22217 Scientific Liaison Group
American Embassy, Room A-407

Director APO San Francisco, CA 96503

Manpower, Personnel and Training

Code 270 Director
Office of Naval Research Naval Research Laboratory

800 North Quincy Street Technical Information Division

Arlington, VA 22217 Code 2627
Washington, D.C. 20375 (6 cys)

Information Systems Program
Code 411-IS Dr. Robert G. Smith

Office of Naval Research Office of the Chief of Naval

800 North Quincy Street Operations, OP987H

* Arlington, VA 22217 Personnel Logistics Plans
P l rWashington, D.C. 20350

. Physiology Program

Code 441 Dr. Jerry C. Lamb

Office of Naval Research Combat Control Systems

800 North Quincy Street Naval Underwater Systems Center

Arlington, VA 22217 Newport, RI 02840

Special Assistant for Marine Naval Training Equipment Center

Corps Matters ATTN: Technical Library

Code 1OOM Orlando, FL 32813

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

-Page 39-

.1%

Department of the Navy Department of the Navy

Human Factors Department Mr. Arnold Rubinstein
Code N215 Naval Material Command
Naval Training Equipment Center NAVMAT 0722 - Rm. 508
Orlando, FL 32813 800 North Quincy Street

Arlington, VA 22217

Dr. Alfred F. Smode
Training Analysis and Evaluation Commander

Group Naval Air Systems Command
Naval Training Equipment Center Human Factors Programs
Code N-OOT NAVAIR 340F

Orlando, FL 32813 Washington, D.C. 20361

Mr. Louis Chmura Commander
Code 7503 Naval Air Systems Command
Naval Research Laboratory Crew Station Design,
Washington, DC 20375 NAVAIR 5313

Washington, D.C. 20361

Dr. Gary Poock
Operations Research Department Mr. Phillip Andrews
Naval Postgraduate School Naval Sea Systems Command
Monterey, CA 93940 NAVSEA 0341

Washington, D.C. 20362

Dean of Research Administration
Naval Postgraduate School Commander
Moro rey, CA 93940 Naval Electronics Systems Command

Human Factors Engineering Branch
Mr. Warren Lewis Code 4701
Human Engineering Branch Washington, D.C. 20360
Code 8231
Naval Ocean Systems Center Mr. John Impagliazzo
San Diego, CA 92152 Code 101

Newport Laboratory
Dr. A. L. Slafkosky Naval Underwater Systems Center
Scientific Advisor Newport, RI 02840
Commandant of the Marine Corps
Code RD-i CDR Robert Biersner
Washington, D.C. 20380 Naval Medical R&D Command

Code 44
J. B. Blankenheim Naval Medical Center
Code 47013 Bethesda, MD 20014
Naval Electronics Systems Command
NC Bldg. #1, Room 4E40 Dr. Arthur Bachrach
Washington, DC 20360 Behavioral Sciences Department

Naval Medical Research Institute

Commanding Officer Bethesda, MD 20014
MCTSSA
Marine Corps Base Dr. George Moeller
Camp Pendleton, CA 92055 Human Factors Engineering Branch

Submarine Medical Research Lab
Naval Submarine Base

-Page 40-

Department of the Navy Department of the Navy

Dr. Mel C. Moy Dean of the Academic Departments
Code 302 U.S. Naval Academy
Naval Personnel R&D Center Annapolis, MD 21402
San Diego, CA 92152

Human Factors Section
Dr. Richard Neetz Systems Engineering Test
Code 1226 Directorate
Pacific Missile Test Center U.S. Naval Air Test Center
Pt Mugu, CA 93042 Patuxent River, MD 20670

Navy Personnel Research and Hdman Factor Engineering Branch

Development Center Naval Ship Research and Development
Planning & Appraisal Center, Annapolis Division
Code 04 Annapolis, MD 21402
San Diego, CA 92152

CDR W. Moroney
Navy Personnel Research and Code 55MP

Development Center Naval Postgraduate School
Management Systems, Code 303 Monterey, CA 93940
San Diego, CA 92152

Mr. Merlin Malehorn

Navy Personnel Research and Office of the Chief of Naval
Development Center Operations (OP-I15)

Performance Measurement & Washington, D.C. 20350
Enhancement

Code 309 Department of the Army

San Diego, CA 92152
Mr. J. Barber

Dr. Julie Hopson HQS, Department of the Army
Human Factors Engineering Division DAPE-MBR
Naval Air Development Center Washington, D.C. 20310
Warminster, PA 18974

Dr. Joseph Zeidner
Mr. Jeffrey Grossman Technical Director
Human Factors Branch U.S. Army Research Institute
Code 3L52 5001 Eisenhower Avenue
Naval Weapons Center Alexandria, VA 22333
China Lake, CA 93555

Director, Organizations and
Human Factors Engineering Branch Systems Research Laboratory
Code 1226 U.S. Army Research Institute
Pacific Missile Test Center 5001 Eisenhower Avenue
Point Mugu, CA 93042 Alexandria, VA 22333

Mr. J. Williams Technical Director
Department of Environmental U.S. Army Human Engineering Labs

Sciences Aberdeen Proving Ground, MD 21005

U.S. Naval Academy
Annapolis, MD 21402

-Pag V1
All~*

~- - -- - - - - -- , - - - - .

Department of the Army Foreign Addressees

ARI Field Unit-USAREUR Director, Human Factors Wing
ATTN: Library Defence & Civil Institute of
C/O ODCSPER Environmental Medicine
HQ USAREUR & 7th Army Post Office Box 2000
APO New York 09403 Downsview, Ontario M3M 3B9

CANADA
Department of the Air Force

Dr. A. D. Baddeley
U.S. Air Force Office of Scientific Director, Applied Psychology Unit
Research Medical Research Council

Life Sciences Directorate, NL 15 Chaucer Road
Bolling Air Force Base Cambridge, CB2 2EF
Washington, D.C. 20332 ENGLAND

Chief, Systems Engineering Branch Other Government Agencies
Human Engineering Division
USAF AMRL/HES Defense Technical Information Center
Wright-Patterson AFB, OH 45433 Cameron Station, Bldg. 5

Alexandria, VA 22314 (12 cys)
Air University Library
Maxwell Air Force Base, AL 36112 Dr. Craig Fields

Director, Cybernetics Technology
Dr. Earl Alluisi Office
Chief Scientist Defense Advanced Research Projects
AFHRL/CCN Agency
Brooks AFB, TX 78235 1400 Wilson Blvd

Arlington, VA 22209

Foreign Addressees

Other Organizations
North East London Polytechnic
The Charles Myers Library Dr. H. McI. Parsons
Livingstone Road Human Resources Research Office
Stratford 300 N. Washington Street
London E15 2LJ Alexandria, VA 22314
ENGLAND

Dr. Jesse Orlansky
Professor Dr. Carl Graf Hoyos Institute for Defense Analyses
Institute for Psychology 400 Army-Navy Drive
Technical University Arlington, VA 22202
8000 Munich
Arcisstr 21 Dr. Arthur I. Siegel
FEDERAL REPUBLIC OF GERMANY Applied Psychological Services, Inc.

404 East Lancaster Street
Dr. Kenneth Gardner Wayne, PA 19087
Applied Psychology Unit
Admiralty Marine Technology Dr. Robert T. Hennessy

Establishment NAS - National Research Council
Teddington, Middlesex TWil OLN JH #819
ENGLAND 2101 Constitution Ave., N.W.

Washington, DC 20418

-Page 42-

Other Organizations

Dr. Timothy Linquist
Department of Computer Science
VPI & SU
Blacksburg, VA 24061

Dr. M. G. Samet

Perceptronics, Inc.
6271 Variel Avenue
Woodland Hills, CA 91364

Dr. Robert Williges
Human Factors Laboratory

Virginia Polytechnical Institute

and State University
130 Whittemore Hall
Blacksburg, VA 24061

Mr. Edward M. Connelly
Performance Measurement
Associates Inc.

410 Pine Street, S.E.
Suite 300
Vienna, VA 22180

-Page 43-

-I -

